
Working with Operators LP&ZT 2007

Logisch Programmeren en Zoektechnieken:
Herfst 2007

Ulle Endriss
Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1



Working with Operators LP&ZT 2007

Operators in Prolog

Operators provide a more convenient way of writing certain
expressions in Prolog that could otherwise be difficult to read for
humans. For example, we can write 3 * 155 instead of *(3, 155)

or N is M + 1 instead of is(N, +(M, 1)).

Both forms of notation are considered to be equivalent, i.e.
matching works:

?- +(1000, 1) = 1000 + 1.

Yes

The objective of this lecture is to show you how you can define
your own operators in Prolog.

Ulle Endriss 2



Working with Operators LP&ZT 2007

Operator Precedence

Some operators bind stronger than others. In mathematics, for
example, * binds stronger than +. The degree to which an operator
is binding is called its precedence.

In Prolog operator precedences are numbers (in SWI-Prolog
between 0 and 1200). The arithmetic operator *, for example, has
precedence 400, + has precedence 500. That is, the lower an
operator’s precedence value, the stronger it is binding.

This is why Prolog is able to compute the correct result in the
following example (i.e. not 25):

?- X is 2 + 3 * 5.

X = 17

Yes

Ulle Endriss 3



Working with Operators LP&ZT 2007

Precedence of Terms

The precedence of a term is defined as the precedence of its
principal operator. If the principal functor isn’t (written as) an
operator or the term is enclosed in parentheses then the precedence
is defined as 0.

Examples:

• The precedence of 3 + 5 is 500.

• The precedence of 3 * 3 + 5 * 5 is also 500.

• The precedence of sqrt(3 + 5) is 0.

• The precedence of elephant is 0.

• The precedence of (3 + 5) is 0.

• The precedence of 3 * +(5, 6) is 400.

Ulle Endriss 4



Working with Operators LP&ZT 2007

Operator Types

Operators can be divided into three groups:

• infix operators, like + in Prolog

• prefix operators, like ¬ in logic or - for negative numbers

• postfix operators, like ! in mathematics (factorial)

Is giving the type of an operator and its precedence already enough
for Prolog to fully “understand” the structure of a term containing
that operator?

Ulle Endriss 5



Working with Operators LP&ZT 2007

Example

Consider the following example:

?- X is 25 - 10 - 3.

X = 12

Yes

Why not 18?

So, clearly, precedence and type alone are not enough to fully
specify the structural properties of an operator.

Ulle Endriss 6



Working with Operators LP&ZT 2007

Operator Associativity

We also have to specify the associativity of an operator: -, for
example, is left-associative. This is why 25 - 10 - 3 is interpreted
as (25 - 10) - 3.

In Prolog, associativity is represented by atoms like yfx. Here f

indicates the position of the operator (i.e. yfx denotes an infix
operator) and x and y indicate the positions of the arguments. A y

should be read as at this position a term with a precedence lower or
equal to that of the operator has to occur, whereas x means that at
this position a term with a precedence strictly lower to that of the
operator has to occur.

Understand how this makes the interpretation of 25 - 10 - 3

unambiguous (note that - is defined using the pattern yfx)!

Ulle Endriss 7



Working with Operators LP&ZT 2007

Associativity Patterns

Pattern Associativity Examples

yfx infix left-associative +, -, *

xfy infix right-associative , (for subgoals)

xfx infix non-associative =, is, < (i.e. no nesting)

yfy makes no sense, structuring would be impossible

fy prefix associative

fx prefix non-associative - (i.e. --5 not possible)

yf postfix associative

xf postfix non-associative

Ulle Endriss 8



Working with Operators LP&ZT 2007

Checking Precedence and Associativity

You can use the built-in predicate current op/3 to check
precedence and associativity of currently defined operators.

?- current_op(Prec, Assoc, *).

Prec = 400

Assoc = yfx

Yes

?- current_op(Prec, Assoc, is).

Prec = 700

Assoc = xfx

Yes

Ulle Endriss 9



Working with Operators LP&ZT 2007

Checking Precedence and Associativity (cont.)

The same operator symbol can be used once as a binary and once
as a unary operator:

?- current_op(Prec, Assoc, -).

Prec = 500

Assoc = fx ;

Prec = 500

Assoc = yfx ;

No

Ulle Endriss 10



Working with Operators LP&ZT 2007

Defining Operators

New operators are defined using the op/3-predicate. This can be
done by submitting the operator definition as a query. Terms using
the new operator will then be equivalent to terms using the
operator as a normal functor, i.e. predicate definitions will work.

For the following example assume our big animals program has
previously been compiled:

?- op(400, xfx, is_bigger).

Yes

?- elephant is_bigger dog.

Yes

Ulle Endriss 11



Working with Operators LP&ZT 2007

Query Execution at Compilation Time

It is possible to write queries into a program file (using :- as a
prefix operator). They will be executed whenever the program is
compiled.

If for example the file my-file.pl contains the line

:- write(’Hello, have a beautiful day!’).

this will have the following effect:

?- consult(’my-file.pl’).

Hello, have a beautiful day!

my-file.pl compiled, 0.00 sec, 224 bytes.

Yes

?-

Ulle Endriss 12



Working with Operators LP&ZT 2007

Operator Definition at Compilation Time

You can do the same for operator definitions. For example, the line

:- op(200, fy, small).

inside a program file will cause a prefix operator called small to be
declared whenever the file is compiled. It can be used inside the
program itself, in other programs, and in user queries.

Ulle Endriss 13



Working with Operators LP&ZT 2007

Summary: Operators

• The structural properties of an operator are determined by its
precedence (a number) and its associativity pattern (e.g. yfx).

• Use current op/3 to check operator definitions.

• Use op/3 to make your own operator definitions.

• Operator definitions are usually included inside a program file
as queries (using :-, i.e. like a rule without a head).

Ulle Endriss 14


